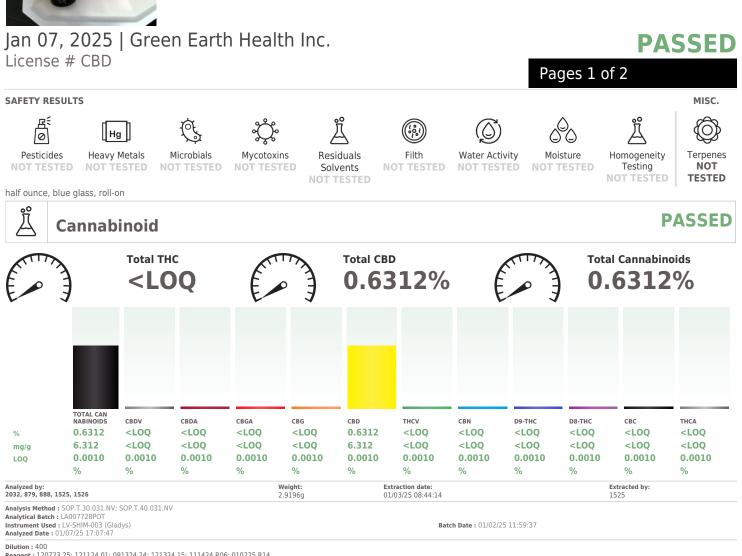


4439 Polaris Ave. Las Vegas, NV, 89103, US (833) 465-8378

Kaycha Labs


Mood Enhance Matrix: Infused Product Type: Topical

Certificate of Analysis

Sample:LA50102002-002 Laboratory License # 69204305475717257553 Sample Size Received: 1 units Retail Product Size: 1 gram Ordered: 12/19/24 Sampled: 01/02/25 Completed: 01/07/25

Reagent : 120723.25; 121124.01; 091324.24; 121324.15; 111424.R06; 010225.R14 Consumables : 20220103; 258638; 1008897304; 1008451138 Pipette : LV-PIP-001(20-200 uL - Scilogex); LV-PIP-015 (20-200 uL - VWR); LV-PIP-008 (20-200 uL - VWR)

Cannabinoid analysis utilizing Ultra High Performance Liquid Chromatography with UV Detection (UHPLC-UV). Method SOP.T.30.031.NV for sample preparation and SOP.T.40.031.NV for analysis. Total THC = d8-THC + d9-THC + 0.877 * THCA, Total CBD = CBD + 0.877 * CBDA

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations.

Kelly Zaugg Lab Director

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

4.3 63

Signature 01/07/25

Kaycha Labs

mood enhance N/A Matrix : Derivative

PASSED

Page 2 of 4

Certificate of Analysis

Green Earth Health

R S

7972 Forest City Road Orlando, FL, 32810, US **Telephone:** 7542241242 **Email:** paul.reid@greenearthhealth.org Sample : DA01119011-016 Harvest/LOT ID: na Batch# : na Sar Sampled : 11/16/20 Cor Ordered : 11/16/20 Sar

Sample Size Received : 15 gram Completed : 11/23/20 Expires: 11/23/21 Sample Method : SOP Client Method

Pesticides

Pesticides	LOD	Units	Action Level	Result
ACEPHATE	0.01	ppm	3	ND
ABAMECTIN B1A	0.01	ppm	0.3	ND
ACEQUINOCYL	0.01	ppm	2	ND
ACETAMIPRID	0.01	ppm	3	ND
ALDICARB	0.01	ppm	0.1	ND
ZOXYSTROBIN	0.01	ppm	3	ND
BIFENAZATE	0.01	ppm	3	ND
BIFENTHRIN	0.01	ppm	0.5	ND
BOSCALID	0.01	PPM	3	ND
CARBARYL	0.05	ppm	0.5	ND
CARBOFURAN	0.01	ppm	0.1	ND
CHLORANTRANILIPROLE	0.1	ppm	3	ND
CHLORMEQUAT CHLORIDE	0.1	ppm	3	ND
CHLORPYRIFOS	0.01	ppm	0.1	ND
CLOFENTEZINE	0.02	ppm	0.5	ND
COUMAPHOS	0.01	ppm	0.1	ND
DAMINOZIDE	0.01	ppm	0.1	ND
DIAZANON	0.01	ppm	0.2	ND
DICHLORVOS	0.01	ppm	0.1	ND
DIMETHOATE	0.01	ppm	0.1	ND
DIMETHOMORPH	0.02	ppm	3	ND
THOPROPHOS	0.01	ppm	0.1	ND
TOFENPROX	0.01	ppm	0.1	ND
TOXAZOLE	0.01	ppm	1.5	ND
ENHEXAMID	0.01	ppm	3	ND
ENOXYCARB	0.01	ppm	0.1	ND
ENPYROXIMATE	0.01	ppm	2	ND
IPRONIL	0.01	ppm	0.1	ND
	0.01	ppm	2	ND
	0.01	ppm	3	ND
IEXYTHIAZOX	0.01	ppm	2	ND
MAZALIL	0.01	ppm	0.1	ND
MIDACLOPRID	0.04	ppm	3	ND
RESOXIM-METHYL	0.01	ppm	1	ND
MALATHION	0.02	ppm	2	ND
METALAXYL	0.01	ppm	3	ND
THIOCARB	0.01	ppm	0.1	ND
THOUSE	0.01	ppm	0.1	ND
/EVINPHOS	0.01	ppm	0.1	ND
AYCLOBUTANIL	0.01	ppm	3	ND
IALED	0.025	ppm	0.5	ND
DXAMYL	0.025	ppm	0.5	ND
PACLOBUTRAZOL	0.01	ppm	0.1	ND
PHOSMET	0.01		0.2	ND
	0.01	ppm	3	ND
PIPERONYL BUTOXIDE		ppm		110
RALLEIMKIN	0.01	ppm	0.4	ND

0.01 0.01 0.05 0.02 0.02 0.01 0.01 0.01	ppm ppm ppm ppm PPM ppm	1 0.1 1 3 3	ND ND ND ND
0.05 0.02 0.02 0.01 0.01	ppm ppm PPM	1 3	ND ND
0.02 0.02 0.01 0.01	ppm PPM	3	ND
0.02 0.01 0.01	PPM		
0.01 0.01		3	ND
0.01	ppm		ND
		3	ND
0.01	ppm	3	ND
	ppm	0.1	ND
0.01	ppm	1	ND
0.01	ppm	0.1	ND
0.05	ppm	1	ND
0.5	РРМ	20	ND
0.01	ppm	1	ND
0.01	ppm	3	ND
0.01	ppm	3	ND
0.01	PPM	0.1	ND
E 0.01	PPM	0.2	ND
0.01	PPM	0.1	ND
0.025	PPM	3	ND
0.01	PPM	0.1	ND
0.01	PPM	1	ND
0.01	PPM	1	ND
			PASS
	Extraction date 11/19/20 05:11:20	Extracte 585 , 1665	
	0.05 0.5 0.01 0.01 0.01 0.01 0.025 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	0.05 ppm 0.5 PPM 0.01 ppm 0.01 ppm 0.01 ppm 0.01 pPM 0.01 PPM 0.01 PPM 0.01 PPM 0.025 PPM 0.01 PPM	0.05 ppm 1 0.5 PPM 20 0.01 ppm 1 0.01 ppm 3 0.01 ppm 3 0.01 pPM 0.1 VE0.01 PPM 0.1 0.025 PPM 3 0.01 PPM 0.1 0.025 PPM 3 0.01 PPM 1 0.01 PPM 1

Analytical Batch - DA019004PES, DA019003VOLKEVIEWEd On- 11/19/20 15:30:46 Instrument Used : DA-LCMS-002_DER (PES) , DA-GCMS-001

Dilution

10

Running On : 11/19/20 18:26:28 , 11/19/20

18:30:33 Batch Date : 11/19/20 11:46:02

Reagent

092320.14

Consums. ID 287035261 76262-590

Pesticide screen is performed using LC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 67 Pesticides. (Method: SOP.T.30.060 Sample Preparation for Pesticides Analysis via LCMSMS and SOP.T40.065 Procedure for Pesticide Quantification Using LCMS). * Volatile Pesticide screening is performed using GC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Analytes marked with an asterisk were tested using GC-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, pbp=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo Lab Director State License # CMTL-0002 ISO Accreditation # 97164

Signature

11/23/2020

Signed On

4131 SW 47th AVENUE SU DAVIE, FL, 33314, USA **Kaycha Labs**

mood enhance N/A Matrix : Derivative

PASSED

Page 3 of 4

PASSED

Certificate of Analysis

Action

Green Earth Health

7972 Forest City Road Orlando, FL, 32810, US **Telephone:** 7542241242 **Email:** paul.reid@greenearthhealth.org Sample : DA01119011-016 Harvest/LOT ID: na Batch# : na Sar Sampled : 11/16/20 Cor Ordered : 11/16/20 Sar

Dage/Eail

Decult

Sample Size Received : 15 gram Completed : 11/23/20 Expires: 11/23/21 Sample Method : SOP Client Method

Residual Solvents

Unite

Solvent	LOD	Units	Action Level (PPM)	Pass/Fail	Result
PROPANE	500	ppm	5000	PASS	ND
BUTANES (N-BUTANE)	500	ppm	5000	PASS	ND
ETHYLENE OXIDE	0.5	ppm	5	PASS	ND
METHANOL	25	ppm	250	PASS	ND
ETHANOL	500	ppm		PASS	ND
PENTANES (N-PENTANE)	75	ppm	750	PASS	ND
ETHYL ETHER	50	ppm	500	PASS	ND
ACETONE	75	ppm	750	PASS	ND
2-PROPANOL	50	ppm	500	PASS	ND
ACETONITRILE	6	ppm	60	PASS	ND
DICHLOROMETHANE	12.5	ppm	125	PASS	ND
N-HEXANE	25	ppm	250	PASS	ND
ETHYL ACETATE	40	ppm	400	PASS	ND
BENZENE	0.1	ppm	1	PASS	ND
HEPTANE	500	ppm	5000	PASS	ND
TOLUENE	15	ppm	150	PASS	ND
TOTAL XYLENES	15	ppm	150	PASS	ND
CHLOROFORM	0.2	ppm	2	PASS	ND
1,2-DICHLOROETHANE	0.2	ppm	2	PASS	ND
1,1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
TRICHLOROETHYLENE	2.5	ppm	25	PASS	ND

Analyzed by 850	Weight 0.0252g	Extraction date 11/23/20 03:11:43	Extracted By 850
Analysis Metho	od -SOP.T.40 ch -DA019063		- 11/23/20 16:37:43
Instrument Us Running On : Batch Date : 1	ed : DA-GCM	5-002	
Instrument Us Running On :	ed : DA-GCM	5-002	

Residual Solvents

Residual solvents screening is performed using GC-MS which can detect below single digit ppm concentrations. Currently we analyze for 21 Residual solvents.(Method: SOP.T.40.032 Residual Solvents Analysis via GC-MS).

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo

Lab Director State License # CMTL-0002 ISO Accreditation # 97164

Signature

11/23/2020

Signed On

DAVIE, FL, 33314, USA

Kaycha Labs

mood enhance N/A Matrix : Derivative

Certificate of Analysis

Green Earth Health

7972 Forest City Road Orlando, FL, 32810, US Telephone: 7542241242 Email: paul.reid@greenearthhealth.org Sample : DA01119011-016 Harvest/LOT ID: na Batch# : na Sampled : 11/16/20 Ordered : 11/16/20

Sample Size Received : 15 gram Completed : 11/23/20 Expires: 11/23/21 Sample Method : SOP Client Method

Weight

PASSED

Page 4 of 4

Extracted By

Ţ.	Microbials	PASSED	သို့	Mycot	oxins		PASSED
Analyte Aspergillus_flav Aspergillus_fumi Aspergillus_nige Aspergillus_terr escherichia_coli_ Salmonella spec	GATUS R EUS SHIGELLA_SPP	Result not present in 1 gram. not present in 1 gram. not present in 1 gram. not present in 1 gram. not present in 1 gram.	AFLATOXIN G1 AFLATOXIN B2 AFLATOXIN B1	LOD 0.002 0.002 0.002 0.002 0.002	Units ppm ppm ppm ppm ppm	Result ND ND ND ND ND	Action Level (PPM) 0.02 0.02 0.02 0.02 0.02 0.02
Analytical Batch	-SOP.T.40.043 / SOP.T.40.044 DA019001MIC Batch Date : 11/19/20 : PathogenDX PCR_Array Scanner DA-111 20/20		Analysis Method -Si Analytical Batch -Di Instrument Used : D Running On : 11/19/ Batch Date : 11/19/	A019005MYC R DA-LCMS-002_DE /20 18:26:04	leviewed On	- 11/23/20 13:	:59:30

Analyzed by

Analyzed by	Weight	Extraction date	Extracted By
1794	0.8709g	11/19/20	513

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. (Method SOP.T.40.043) If a pathogenic Escherichia Coli, Salmonella, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, or Aspergillus terreus is detected in 1g of a sample, the sample fails the microbiological-impurity testing.

_	585	1g	11/19/20 05:11:12	585	
s	Sample Preparatio	n and SOP.T40	chratoxins A testing using LC-MS. 1.065 Procedure for Mycotoxins Qu 2 must individually be <20ug/Kg.	uantification Using LCMS. LOQ 1.0	

Extraction date

[Нд]	Heavy	y Meta	ls	PASSED
Dilution 100	///		t)(7007
Metal	LOD	Unit	Result	Action Level (PPM)
ARSENIC	0.02	РРМ	ND	1.5
CADMIUM	0.02	PPM	ND	0.5
MERCURY	0.02	PPM	<0.100	3
LEAD	0.05	РРМ	ND	
Analyzed by	Weight	Extractio	n date	Extracted By
1022	0.2485g	11/19/20 0	5.11.27	1879

Analysis Method -SOP.T.40.050, SOP.T.30.052 Analytical Batch -DA019007HEA | Reviewed On - 11/23/20 08:52:55 Instrument Used : DA-ICPMS-002 Running On : 11/23/20 08:37:20 Batch Date : 11/19/20 11:59:35

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometer) which can screen down to below single digit ppb concentrations for regulated heavy metals using Method SOP.T.30.052 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.050 Heavy Metals Analysis via ICP-MS.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detectod, NA=Not Analyzed, pm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Jorge Segredo Lab Director State License # CMTL-0002

ISO Accreditation # 97164

Signature

11/23/2020

Signed On

Kaycha Labs Mood Enhance Matrix : Infused Product Type: Topical

4439 Polaris Ave. Las Vegas, NV, 89103, US (833) 465-8378

Certificate of Analysis

Green Earth Health Inc.

License # CBD

Sample : LA50102002-002 Sampled : 01/02/25 Ordered : 01/02/25

Sample Size Received : 1 units Completed : 01/07/25 Expires: 01/07/26 Sample Method : SOP Client Method PASSED

Page 2 of

2

COMMENTS

* Confident Cannabis sample ID: 2412DBL0061.3618

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on NV regulations. Kelly Zaugg

State License # L003 ISO 17025 Accreditation # ISO/IEC 17025:2017: 97164

Signature 01/07/25